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ABSTRACT

The increased use of solar photovoltaic (PV) cells as energy sources on electric grids has created the need

for more accessible solar irradiance and power production estimates for use in power modeling software. In

the present paper, a novel technique for creating solar irradiance estimates is introduced. A solar PV resource

dataset created by combining numerical weather prediction assimilation model variables, satellite data, and

high-resolution ground-based measurements is also presented. The dataset contains ’152 000 geographic

locations each with ’26 000 hourly time steps. The solar irradiance outputs are global horizontal irradiance

(GHI), direct normal irradiance (DNI), and diffuse horizontal irradiance (DIF). The technique is developed

over the United States by training a linear multiple multivariate regression scheme at 10 locations. The

technique is then applied to independent locations over the whole geographic domain. The irradiance esti-

mates are input into a solar PV power modeling algorithm to compute solar PV power estimates for every

13-km grid cell. The dataset is analyzed to predict the capacity factors for solar resource sites around theUnited

States for 2006–08. Statistics are shown to validate the skill of the scheme at geographic sites independent of

the training set. In addition, it is shown that more high-quality, geographically dispersed, observation sites

increase the skill of the scheme.

1. Introduction

Over the last decade the use of solar photovoltaics

(PV) has expanded dramatically. The deployment of

solar PV has societal benefits, such as no pollution from

electric power production, very little water use, abun-

dance as a resource, silent operation, long lifetime, and

little maintenance. However, the application of solar

PV to electric grids has downsides, most notably the

variability of power output, which can add strain to the

system. The variable nature of solar PV could hamper

further deployment or diminish the carbon mitigation

potential because of the need for more reserves on the

electric grid to compensate for fluctuations in the

power output. For a more detailed overview of solar

PV, see Dominguez-Ramos et al. (2010), Lueken et al.

(2012), Mills andWiser (2010), Parida et al. (2011), and

Solanki (2009).

When estimating the solar PV power output, the fol-

lowing two-step procedure is generally carried out. First,

meteorological data are supplied and the solar irradi-

ance is estimated, and then the solar irradiance is input

into a powermodeling algorithmwith information about

the solar PV cell and temperature (Deshmukh and

Deshmukh 2008; Huang et al. 2013; Zhou et al. 2007).

The solar irradiance can be estimated for a past time

(hindcasting), the present time (analysis), or for a future

time (forecasting). Once the solar irradiance is found,

the techniques for calculating the power output are es-

sentially the same. The technique developed in this pa-

per takes historical data and performs the algorithms as

if it were the present time to create an analysis.

If the input solar irradiance for the PV powermodeling

is inaccurate, then the power output will be incorrect

regardless of the precision of the power algorithm. There

has been intensive research into the accuracy of the solar

irradiance measurements (e.g., Geuder et al. 2003; Myers

2005) and improving the prediction of solar irradiance

(e.g., Kratzenberg et al. 2008; Paulescu et al. 2013; Wong
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and Chow 2001). The prediction of solar irradiance usu-

ally falls into two categories. First, short-term prediction

using an array of novel techniques, for example, neural

networks (Wang et al. 2011). Second, and more com-

monly, using satellite data as a proxy, the solar irradiance

is computed (Hammer et al. 1999; Houborg et al. 2007;

Vignola et al. 2007). The aforementioned methods also

use basic numerical weather prediction (NWP) model

outputs or ground data. The present paper relies upon

NWP assimilation data of hydrometeors complemented

with satellite data. The solar irradiance (shortwave and

longwave radiation fields) from the NWP assimilation

model is not used because at time zero there is not a

model output for it with themodel being used.Moreover,

some NWP assimilation models do not currently give

direct-normal (the amount of radiation per unit area re-

ceived by a plane perpendicular to the rays that come

from the sun in a straight line) or diffuse (the amount of

radiation per unit area that does not arrive in a direct path

from the sun) radiation output fields.

Recently, there have been several studies on numer-

ical weather prediction and solar energy (Mathiesen

et al. 2013; Mathiesen and Kleissl 2011; Perez et al.

2013). In addition, there has been extensive effort at

the National Renewable Energy Laboratory (NREL)

to produce the national solar radiation database

(http://rredc.nrel.gov/solar/old_data/nsrdb/) and there are

commercial products available that provide resource

mapping for the United States (from, e.g., Vaisala,

Clean Power Research, or GeoModel Solar). All of

these products are estimates, are not produced in con-

cert with other weather-driven renewables, and are

subject to improvement. The improvements could be

higher spatial resolution, higher temporal resolution, and

reductions in biases or RMSE. Nevertheless, the pro-

duction of these products shows the growing need within

the United States for datasets of solar irradiance and

power. In theory, all these products can have the procedure

to be outlined in the present paper applied to them (to

further enhance the accuracy of the results). The model

developed in the present paper finds estimates for the en-

tire United States at a spatial discretization of 13km and

temporal resolution of 1 h for 3 yr. The scale of the model

and its inputs is a first and is a demonstration that will be

applied to much larger datasets in the near future. It is also

the first to combine satellite and NWP assimilation data,

along with ground-based observations, for solar irradiance

estimates usingmultiple multivariate linear regression over

such awide spatial and temporal rangewith high resolution.

To produce accurate solar irradiance estimates, the

use of excellent quality solar measurements is funda-

mental. The United States has many such high-quality

measurement networks. Two of them are used in the

present paper: the Surface Radiation Budget Network

(SURFRAD; http://www.esrl.noaa.gov/gmd/grad/surfrad/)

and the Integrated Surface Irradiance Study Network

(ISIS; http://www.esrl.noaa.gov/gmd/grad/isis/). Formore

information on these two networks, see Augustine et al.

(2005), Hicks et al. (1996), and Wang et al. (2012). The

present paper uses all seven of the SURFRAD sites and

five of the ISIS sites for the majority of the solar irradi-

ance measurements. The locations of the SURFRAD

sites are Bondville, Illinois; Table Mountain, Colorado;

Desert Rock, Nevada; Goodwin Creek, Mississippi; Fort

Peck,Montana; The Penn StateUniversity, College Park,

Pennsylvania (PSU); and Sioux Falls, South Dakota. The

locations of the ISIS sites are Albuquerque, NewMexico;

Madison, Wisconsin; Salt Lake City, Utah; Sterling,

Virginia; and Hanford, California (HNX). There are

three sites from the ISIS network that were not active

during the study dates (2006–08) and, therefore, are not

included (Seattle, Washington; Bismarck, North Dakota;

and Tallahassee, Florida). The locations of the mea-

surement sites are shown in Fig. 1.

To investigate the validity of the scheme employed,

seven other publicly available solar irradiance mea-

surement sites are leveraged to compare the solar irra-

diance estimates and the observations at these

independent sites. Two sites, Elizabeth, North Carolina,

and Golden, Colorado, were acquired from the Mea-

surement and Instrumentation Data Center (MIDC)

run by the NREL (http://www.nrel.gov/midc/) and the

remaining five sites (Burns, Oregon; Silver Lake, Ore-

gon; Herminston, Oregon; Moab, Utah; and Dillon,

Montana) were obtained from the University of Oregon

Solar RadiationMonitoring Laboratory (http://solardat.

uoregon.edu/SolarData.html). Additionally, one ISIS

(Hanford, California) and one SURFRAD (The Penn-

sylvania State University, College Park, Pennsylvania)

FIG. 1. Geographic locations of the SURFRAD (blue) and ISIS

(red) network sites. Images are courtesy of NOAA’s Global

Monitoring Division.
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location were reserved exclusively to serve as further

validators. In total, three years of data (2006–08) at 10

training and 9 validation sites were concatenated for the

proposed method.

The primary goal of the present paper is to provide a

novel technique for computing solar irradiance and solar

PV power estimates that can be applied to any weather

model. The secondary goal is to produce a high-quality

demonstration resource mapping dataset of solar irra-

diance and solar PV power over the United States at

high resolution (13 km, hourly). The paper is organized

as follows. Section 2 explains the basic methods of the

technique, its mathematical underpinning, and the data

processing; section 3 contains the procedure carried out

for the solar irradiance estimates, along with the statis-

tics associated with its implementation; section 4 ex-

plains the power modeling algorithm using the solar

irradiance as inputs; and finally, in section 5, the con-

clusions and future work are discussed.

2. Data and methods

The method used in the present paper for solar irra-

diance estimates is linearmultiplemultivariate regression

(Pearson 1908; Stanton 2001). The first task is to collect

all the data that are needed: NWP assimilation model

variables on an hourly basis, GOES-East satellite data

for the continental United States, and ground-based

measurements of global horizontal irradiance (GHI),

direct-normal irradiance (DNI), and diffuse horizontal

irradiance (DIF). The GHI is the total amount of irradi-

ance falling on a horizontal unit area. The DNI is defined

as the amount of irradiance falling on a unit area that is

perpendicular to the rays propagating in a straight line

from the sun. The DIF is the amount of irradiance falling

on a horizontal unit area that is not directly from the sun.

The satellite measurements are at 15-min temporal res-

olution for the years 2006–08. There is a percentage of

time when there were not any satellite data available

because of full disk images, maintenance, and other

malfunctions, which resulted in a dataset with 87.99% of

the hours having all of the wavelengths required.

The numerical weather prediction assimilation

model used is the 13-km Rapid Update Cycle (RUC;

information online at http://ruc.noaa.gov/). The satel-

lite data are obtained from the Geostationary Opera-

tional Environmental Satellite-East (GOES-East; http://

www.ssec.wisc.edu/datacenter/archive.html). All of the

data are publicly available. The RUC was used because

having a dual dataset with wind and solar PV power

that are on a synchronous temporal scale and spatial

grid was desired. Moreover, the technique (or model) is

devised to be as accessible as possible so that as many

users as possible can utilize it with different models and

geographic areas.

The author at the time of writing was only able to

handle the data from the GOES-East satellite. It would

have been beneficial to have a combination of the

GOES-East and -West satellite datasets. The parallax

effect created by only having the GOES-East data is

minimized byNOAAalgorithms for use inNWPmodels

and, thus, is assumed to be negligible on the regression

results. It is understood, however, that there is still an

effect. The regression would be more successful with

blended satellite data. Five channels of satellite data are

utilized: four in the infrared spectrum [3.8–4.0mm, 6.5–

7.0mm (water vapor), 10.2–11.2mm, and 11.5–12.5mm]

and one in the visible spectrum (0.55–0.75mm). The data

are simply the unsigned bit count values on a scale of

0–255. The count values B can be converted to tempera-

ture T using the following formulas:

T5
1

2
(6602B) 0#B# 176 and

T5 4182B 176,B# 255. (1)

The temperature in Eq. (1) has units of kelvins. The

count values are used instead of the temperature be-

cause they stretch out the highest temperatures (0.5K

per count) and map directly (one to one) to the lowest

temperatures (1K per count). The geographic resolu-

tion of the satellite data is 4 km, except for the visible,

which is 1 km. Since the spatial resolution of the RUC is

at 13 km and the temporal resolution is 60 min, in-

terpolations were performed to bring the satellite data

to the RUC discretization. The satellite data are re-

gridded to the RUC resolution for three reasons. First,

coarser resolution is computationally easier for the

demonstration dataset. Second, the required dataset is

designed to be coincident with a wind dataset from

Clack et al. (2016) on the 13-km grid that utilizes the

same model physics. Third, interpolating from a finer

resolution to a coarser one will smooth the data, whereas

the reverse will be an extrapolation of data and is subject

to more errors. The spatial regridding is performed us-

ing weighted data points from nearby cells and a cubic

spline fit from 4km (and 1km) to the 13-km grid. The

temporal interpolation was only used if the top of the

hour (hh00) was not available (when the NWP assimi-

lationmodel data are output) because ofmaintenance of

the satellite or full disk scans. A linear interpolation was

applied for successive 15-min intervals around the top of

the hour up to a maximum of 45 min on each side of that

hour. If there were no data for the whole period of

(hh 2 1)15–hh45, no interpolation is applied and no

satellite data are reported. In total, a dataset was
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created that contained all five channels on 23 145 h of

the possible 26304 h between 2006 and 2008. Because of

missing satellite data, multiple regressions were per-

formed to increase the accuracy of the solar irradiance

estimates in the absence of some of the satellite channels.

TheRUC is cycled hourly for the whole 3-yr period of

2006–08. The RUC assimilates thousands of measure-

ments across the contiguous United States. The 3D data

assimilation matrix was downloaded for each hour for the

three years. For the purposes of the solar irradiance

modeling, the following variables were extracted from the

data: water vapor, cloud water, rain, cloud ice, snow,

graupel, and temperature at 2m. All the variables, except

temperature, are the total throughout the vertical column

within the model. The variables were chosen because of

their known direct impact on solar irradiance attenuation.

After all of the data were extracted, there were 25663h

remaining of the 26304 possible (97.6%).

In addition to the satellite andNWP assimilation data,

the solar irradiance falling onto the top of the atmo-

sphere is computed for each hour. The irradiance at the

top of the atmosphere takes into account the eccentricity

of Earth’s orbit. The average extraterrestrial irradiance

(I0), about which the irradiance fluctuates, is 1360.8Wm22

(Kopp and Lean 2011; Vignola et al. 2012). The equation

for the extraterrestrial irradiance outside Earth’s atmo-

sphere (normal to the photosphere of the sun) is

DNI
0
5 I

0

�
R

av

R

�2

, (2)

where Rav is the mean sun–Earth distance and R is the

actual sun–Earth distance at a specific instant. An ap-

proximation for (Rav/R)
2 was used:

�
R

av

R

�2

’ 1:000 1101 0:034 221 cos(d)1 0:001 280 sin(d)

1 0:000 719 cos(2d)1 0:000 077 sin(2d) .

(3)

Here, d 5 2pd/365.242 radians, and d is the day of the

year (Spencer 1971). The error associated with the

Fourier approximation is very small (0.0001%). An-

other parameter that was computed for the dataset was

the solar zenith angle (sza). The solar zenith angle is

defined as

cos(sza)5 sin(lat) sin(dec)1cos(lat) cos(dec) cos(ha),

(4)

where dec is the declination angle, ha is the hour angle,

and lat is the latitude in radians. The declination angle

can be approximated by (Spencer 1971)

dec5 « sin
n
d1

p

180
[279:931 1:915 sin(d)20:0795 cos(d)

1 0:02 sin(2d)2 0:001 62 cos(2d)]
o
,

(5)

where « is Earth’s axial tilt or obliquity of the ecliptic in

radians (0.4091738). The hour angle is simply computed as

ha5p

�
12

hr

12

�
2 lon, (6)

with hr being the hour of the day in UTC and lon the

longitude in radians. Equation (6) applies when lon , 0

(as is the case for the contiguous United States); when

lon $ 0, then ha 5 p(hr/12 2 1) 1 lon.

The ground-based observations of solar irradiance are

taken from publicly available sites across the contiguous

United States. Both the SURFRAD and ISIS sites

have a measurement frequency of 3 min. Averages of

the solar irradiance measurements were taken over time

to compensate for the fact that the SURFRAD and ISIS

sites are point measurements and the NWP assimilation

model variables are over a gridded area. The averages

are taken from 6 min before the top of the hour to

6 min after the top of the hour (five measurements). The

averaging time was chosen to balance the need for ac-

curate measurements along with the need for a reliable

average value to use in the regression. It is designed to

be short enough that the clouds do not have enough time

(on average) to advect fully across the RUC cell, but

long enough to remove scattered cloud in a small

percentage of the box that happens to be over the

measurement site at a single time. The chosen time

scales gave the best overall performance, which is

defined as the lowest bias and RMSE values for the

training set comparisons. Solar irradiance measure-

ment averages that were produced from all of the data

points were used. All of the times of the measure-

ments were shifted to coordinated universal time

(UTC) to make sure all data at different locations

match with the NWP and satellite data. Only time

steps that had both measurements of DNI and DIF

were included. The DNI is measured at all sites with

a Normal Incidence Pyrheliometer, while the DIF is

measured with an Eppley 8–48 ‘‘black and white’’

pyranometer. The irradiance measurements are

spectrally integrated between 280 and 3000 nm. The

SURFRAD and ISIS sites do measure GHI; however,

the measurements are less accurate than calculat-

ing the GHI from the DNI and DIF measurements,

known as the component-sum technique (Michalsky

et al. 2003):
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GHI5DNI cos(sza)1DIF. (7)

The instrument errors were taken to be 61% of the

observed value (see documentation online at http://

www.esrl.noaa.gov/gmd/grad/instruments.html). The in-

strument errors are in a simplistic form for computational

expedience; however, it is recognized that for a more

accurate regression, the errors should be taken for each

instrument at each site. The SURFRAD and ISIS sites

were chosen because of their high quality, regular ser-

vicing, and calibration.

Once the NWP assimilation data, ground measure-

ments, and satellite data are collated, the linear multiple

multivariate regression can be performed. The re-

gression can be represented mathematically as

Y
n3p

5X
n3(r11)

b
(r11)3p

1 «
n3p

, (8)

where Yn3p are the endogenous variables or regressands,

Xn3(r11) are the exogenous variables or regressors,

b(r11)3p are the effects or regression coefficients, and «n3p

are the disturbance or error terms. In Eq. (8), n is the

number of observations, p is the number of different

propertiesmodeled, and (r1 1) is thenumber of independent

inputs. For our specific cases, Y are the ground-based mea-

surements of GHI, DNI, and DIF;X are the NWP assimila-

tion model variables and satellite data; « is the residuals from

themodel versus data; andb are the regression coefficients to

be applied to all other locationswhen the training set has been

regressed against. It is assumed that the expected value of the

error term is zero; that is,E(«i)5 0. It was also assumed that

the errors are independent between species or irradiance; that

is, cov(«i, «k) 5 si,kI, i, k 5 1, 2, . . . , p. The irradiance

species are dependent; however, assuming they are not

does not significantly change the results of the regression

in comparison with performing them separately (the

RMSE and bias are the same to two decimal places).

Computationally, the linear multiple multivariate re-

gression is more efficient. The solution of the linear mul-

tiple multivariate regression can be found to be

b̂5 (X 0X)21
X 0Y , (9)

with b̂ being the estimators of the regression. Equation

(9) is derived by minimizing Eq. (8). The minimization

finds the smallest sum of deviations from all the in-

dependent variables. The estimators are placed into

I
q
5 �

r11

j51

b̂
j
x
j

(10)

to model the irradiance at all locations over the domain

being studied. The estimated GHI, DNI, or DIF at a

single instant (hour) is Iq. There are numerous software

packages that find the solution of Eq. (8). The IDL

Advanced Statistics package was used to perform the

regressions. The algorithm takes advantage of single-

value decomposition to ensure that the matrix inversion

is accurate. When the regressions are carried out, the

analysis of variance (ANOVA) can be performed to

determine the performance of the technique. Once the

values for each b̂j are found, those values can be applied

throughout the contiguous United States.

3. Solar irradiance estimates

As established in section 2, satellite data, numerical

weather model assimilation data, and ground-based

measurement data that have been interpolated to ex-

actly the same gridded space over the contiguousUnited

States with a temporal resolution of an hour were ob-

tained. The ground-based measurements are at 10 dif-

ferent sites for the regression and 9 independent sites for

validation purposes. Once the quality control and

nighttime removal had taken place, 32 different re-

gressions were performed for each of the irradiance spe-

cies. The large number of regressions was required to

account for times when some (or all) of the satellite data

were unavailable. To get the most comprehensive dataset

possible required carrying out the regression with data

being denied to replicate the missing data. Training the

regressions in this manner allows for all eventualities

when applying the technique to sites outside the training

cells. In addition, a further regressionwith just the satellite

data (not assimilation data) was computed to compare our

new technique with the simple technique of regressing

only against satellite data and the extraterrestrial irradi-

ance. For the sake of brevity, the results of every single

regression are not shown, but rather the results from the

three main regressions are presented: those that include

all the data, those that include only the satellite data, and

those that include only the assimilation data. Further to

this, comparisons between the overall output from the

procedure (which uses the appropriate regressions when

necessary) and the measurements at the training and

validation sites are performed.

The regressors xj for Eq. (8) are as follows: x0 is a

constant; x1 is the total solar irradiance at the top of the

atmosphere, corrected for the variability of the distance

of Earth from the sun, multiplied by the cosine of the

zenith angle; x2 is the water vapor; x3 is cloud water; x4 is

rain; x5 is cloud ice; x6 is snow; x7 is graupel; x8 is 2-m

temperature, x9 is a 4-mm satellite; x10 is an 11-mm sat-

ellite; x11 is a 13-mm satellite; x12 is a visible satellite; and

x13 is the satellite water vapor. Thus, x0 and x1 are calcu-

lated, x2–x8 are the RUC assimilation model hydrome-

teors, and x9–x13 are the satellite measurements.

JANUARY 2017 C LACK 113

http://www.esrl.noaa.gov/gmd/grad/instruments.html
http://www.esrl.noaa.gov/gmd/grad/instruments.html


The linear multiple multivariate regression was per-

formed over the period 2006–08 to improve the accuracy of

the procedure. The total number of training data points is

81434 for each of the irradiance species, which is very

dense.However, it was found that each addition of an extra

site improved the regressions’ performance in terms of

mean biased error (MBE), RMSE, and coefficient of var-

iation (CV), and thus the regression has not been saturated

or overfitted. Additional sites would be most beneficial

from areas of poorly sampled climates, that is, remote lo-

cations relative to the existing training set of locations.

Increasing the number of training data points will in-

crease the value of the regular definition of the multiple

linear correlation coefficient (the dimensional extension

of R2, so the symbol is retained); thus, when analyzing the

statistics, only the adjusted version is computed, R2, which

takes into account the additional data points by (Theil 1961)

R2 5 12 (12R2)
r2 1

r2h2 1
5R2 2 (12R2)

h

r2h2 1
,

(11)

where h is the number of regressors and r is the

sample size.

The linear multiple multivariate regression co-

efficients are shown in Tables 1–3. The A denotes the

regression that includes all the data, B designates the

regression that includes only the satellite data, and C

represents the regression that only includes the assimi-

lation data. To reiterate, when the coefficients are ap-

plied to locations outside the training domain, themodel

utilizes the best of the 32 multivariate regressions based

upon the data available for that time step. As the linear

multiple multivariate regression can result in negative

values, a nonnegative filter is applied and sets negative

values to zero. The tabulated form of the regression

coefficients allows us to compare which terms signifi-

cantly change when the regression is altered. For ex-

ample, it can be seen that b̂1 is almost completely

unchanged between the three regressions in Table 1,

which is to be expected as the coefficient relates how the

solar irradiance at the top of the atmosphere multiplied

by the cosine of the zenith angle affects the irradiance.

TABLE 1. RUC assimilation model GHI regression coefficients. The b̂j are the coefficients that multiply the regressors xj (written out in

the text) that linearly combine to provide the irradiance estimates. The regression with both the assimilation and satellite data is GHI A,

the satellite only regression is GHI B, and the assimilation only regression is GHI C.

b̂0 b̂1 b̂2 b̂3 b̂4

GHI A 716 0.694 221.2 2211 91.9

GHI B 11.3 0.696 — — —

GHI C 2727 0.659 243.5 2447 251

b̂5 b̂6 b̂7 b̂8 b̂9

GHI A 274.8 271.2 617 22.06 0.866

GHI B — — — — 2.37

GHI C 2402 2192 1520 2.69 —

b̂10 b̂11 b̂12 b̂13

GHI A 23.71 1.83 21.36 0.528 —

GHI B 24.59 2.21 21.23 0.378 —

GHI C — — — — —

TABLE 2. As in Table 1, but for DNI.

b̂0 b̂1 b̂2 b̂3 b̂4

DNI A 1170 0.447 275.0 2293 375

DNI B 334 0.411 — — —

DNI C 22510 0.280 2131 2746 751

b̂5 b̂6 b̂7 b̂8 b̂9

DNI A 28.76 294.2 719 21.95 5.58

DNI B — — — — 7.74

DNI C 2807 2342 2180 10.2 —

b̂10 b̂11 b̂12 b̂13

DNI A 211.5 3.46 21.63 0.703 —

DNI B 213.5 5.08 21.45 0.500 —

DNI C — — — — —
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The same coefficient is only slightly altered for the DNI

and DIF regressions as well, as shown in Tables 2 and 3.

The satellite coefficients are not changed dramatically

between regressions A and B (order of magnitudes are

typically the same), but their values are slightly altered.

This result is to be expected because the assimilation data

were included to provide information about the optical

thickness (water content) of the clouds that the satellites

measure. For the majority of the time, this results in an

important correction but does not necessitate a large al-

teration in the satellite coefficients. The final use of Tables

1–3 is to facilitate the procedure to be leveraged without

the need to repeat the training of the regression for other

users. The users would need satellite and/or RUC assimi-

lation information at their location to produce an estimate

of the resource at their site for a time period not encap-

sulated in the dataset produced by the present paper.

To analyze the performance of the linear multiple

multivariate regressions, various statistics are calculated

because a single statistic on its own may improve when

the performance could be considered to be diminished

depending upon the eventual use of the data. The most

important statistics are displayed in Table 4 for the

training set only and the values are for the hourly data.

Within the training set, there are 10 different sites, and

the accuracy of the regression varies from site to site, but

the salient features are captured in the displayed combined

statistics (because it is a requirement that the dataset be as

accurate as possible over as many sites as possible). In

Table 4 it becomes clear that the regression is best at es-

timating the global horizontal irradiance (in terms of all

metrics shown). The range of GHIMBE is 2%–4% for all

of the regressions, which is similar to results found by

others that consider much smaller geographic areas

(Vignola et al. 2007). The adjusted multiple linear corre-

lation coefficient is in the high 90% range, which, along

with the RMSE and CV of 20%–25%, shows great accu-

racy in predicting the GHI at the training sites overall.

It can be seen in Table 4 that the regressions get

progressively worse as data are removed from them. The

negative bias gets larger betweenA and C,R2 decreases,

and both RMSE and CV increase. The regression with

only satellite data (B) is better than the assimilation data

only (C), and both are worse than when satellite and

assimilation data (A) are used in concert. The im-

provement can be attributed to the removal of errors

and biases with the combination of the two data types.

The remaining unexplained variance and error is likely

TABLE 3. As in Table 1, but for DIF.

b̂0 b̂1 b̂2 b̂3 b̂4

DIF A 2179 0.159 17.0 236.8 249.4

DIF B 24.43 0.157 — — —

DIF C 750 0.185 34.7 132 2205

b̂5 b̂6 b̂7 b̂8 b̂9

DIF A 230.2 236.7 21.62 0.341 22.10

DIF B — — — — 22.86

DIF C 261 47.3 2477 22.76 —

b̂10 b̂11 b̂12 b̂13

DIF A 3.64 21.06 0.273 20.0412 —

DIF B 4.27 21.36 0.0816 20.0436 —

DIF C — — — — —

TABLE 4. Statistics of the regressions over all of the training sites. Regression A has both the assimilation and satellite data, regression B is

has satellite-only data, and regression C is the assimilation-only scheme.

Irradiance Mean (Wm22) MBE (%) R2(%) RMSE (%) CV (%)

GHI A 442.00 22.82 94.17 20.67 20.48

B 442.00 23.33 92.96 22.63 22.39

C 442.00 24.26 91.08 25.60 25.25

DNI A 512.37 212.41 77.75 41.82 39.94

B 512.37 215.33 71.80 47.92 45.40

C 512.37 222.16 54.29 57.46 53.01

DIF A 148.66 24.19 82.87 42.42 42.21

B 148.66 24.63 80.83 44.56 44.32

C 148.66 26.90 69.20 55.40 54.97
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to be due to measurement errors, aerosols, and the aver-

aging of single point data over a gridded space. It is worth

noting that the spatial resolution of the irradiance esti-

mates is 13km, yet they are able to reproduce accurate

estimations by other models that are at higher resolution

(Vignola and Perez 2004). The direct normal irradiance

estimates are theworst in terms ofMBEandR2. The large

negative bias is associated with the spatial resolution of

the satellite and assimilation data versus the single-point

measurements of DNI. The measurement site can have

small clouds (and aerosols) pass by that specific site, but

not be registered in the estimate. Another source of error

is that the regression uses vertical column values. Thus,

when the irradiance ray is impinging at an angle, it may be

attenuated by the atmosphere in neighboring cells.

The statistics shown so far are for the training set. One

SURFRAD and one ISIS site were retained to perform

an ‘‘initial’’ validation of the procedure at two inde-

pendent sites excluded from the training set. In Table 5,

the same statistics as in Table 4 are shown, but for

the two initial validation sites. Again, these are for the

hourly values. Table 5 shows that in general terms the

validation sites perform as would be expected. That is,

there are no significant changes in RMSE, CV, or R2.

However, there are some differences that are worth dis-

cussing. The sign of the biases of the GHI and DNI are

reversed and the R2 is lower than was previously found,

which suggests that the procedure is less accurate at sites

independent from the training set, which is to be expected.

To take a different look at the accuracy, analysis of the

residuals of the estimated irradiance minus the ground-

based measurement was carried out. The probability

density functions (PDFs) of the residual divided by the

measurement (relative error) were computed and are

plotted in Fig. 2. In the images the black lines are for

regression A, with both the assimilation and satellite

data; the red lines are for regression B, the satellite-only

version; and the blue lines are for regression C, which

includes the assimilation only. The top panel in Fig. 2 is

the histogram for the training sites and the bottom panel

is for the validation sites. It is clear from the panels that

the training sites histograms are sharper, and the nega-

tive bias can be seen (left of the zero line), which is also

listed in Table 4. The left-hand tail of the PDF for both

the training and validation panels in Fig. 2 falls off faster

TABLE 5. As in Table 4, but only over two initial validation sites.

Irradiance Mean (Wm22) MBE (%) R2(%) RMSE (%) CV (%)

GHI A 458.13 2.41 89.37 19.57 19.42

B 458.13 2.67 88.16 20.67 20.50

C 458.13 1.08 83.91 24.03 24.01

DNI A 468.03 2.35 65.91 39.51 39.44

B 468.03 0.21 58.98 43.27 43.27

C 468.03 29.80 41.86 52.93 52.01

DIF A 164.60 29.26 66.26 40.33 39.25

B 164.60 210.32 63.43 42.08 40.80

C 164.60 210.60 48.26 49.92 48.78

FIG. 2. Histograms of the difference between the estimated GHI

and the measured GHI at the (top) training and (bottom) verifi-

cation sites. The black dotted lines denote regression A with both

the assimilation and satellite data; the red dashed lines are for the

satellite-only regression; and the blue solid line is for the assimilation-

only regression C. The relative error is the difference divided by

the measurement.
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than the right-hand tail. It becomes apparent that the

black histogram (NWP and satellite data) is more cen-

tered about the zero line, and the narrowest. The worst

performance is displayed by the blue lines (NWP data

only). The two different plots show the same general

characteristics, indicating that the technique is working

well at sites that are independent to the training sites.

It is instructive to see the training and validation

computations versus the measurements for comparison.

In Fig. 3, the GHI, DNI, and DIF differences are shown

(estimated minus measurements) versus the measure-

ments for the three regression types. The panels in Fig. 3

show themedian values of the differences with solid lines.

The 25% and 75% percentiles are shown as the hori-

zontal bars. Additionally, the vertical bars continue to the

10%and 90%percentiles. For comparison, guidelines are

added to the panels that show 25% (dotted), 50%

(dotted–dashed), and 100% (dashed) relative errors. The

vertical lines are separated for image clarity, but are

computed at the same points. Further, Fig. 4 displays the

differences (estimated minus measurements) versus the

zenith angle. The same percentiles as in Fig. 3 are shown.

The top panel in Fig. 3 shows the GHI differences

versus the measurements. There are three colors in

Fig. 3, which represent the three regression types being

displayed in the present paper. The black is for re-

gression scheme A, the red is for scheme B, and blue is

for scheme C. All three are plotted in the same figure to

illustrate that they all have the same overall features

with regard to bias and slope; however, there is in-

creasing accuracy and decreasing scatter from scheme C

to A. This provides some verification that the additional

data improve the performance of the model. It shows

that, in general, the estimated GHI is close to the mea-

sured result with a slight positive bias (on average) at

low irradiance and a slight negative bias (on average) at

high irradiance. Note that the median of the error peaks

at 150Wm22. The range of errors is largest between 200

and 400Wm22, which could be attributed to scattered

cloud within the gridded domain over the observation

site and, possibly, clouds that are not in the grid cell, but

rather in neighboring cells that are affecting the mea-

surements, whereas the regression has no knowledge of

these clouds. It could also be attributed to the parallax

effect of only using a single-satellite data stream. After

400Wm22, the median errors become negative. It can

be seen that the median errors remain within 25% of the

observations, with the exception of very low values of

irradiance. The distribution of errors is narrower

(sharper) for the combined regressions when compared

with the other two. The middle panel in Fig. 3 displays

the DNI differences and the bottom panel shows the

DIF differences. The DNI differences have much larger

slopes than the GHI and the variance of the error is also

larger (as shown in Tables 4 and 5). The larger slope,

from a positive bias to a negative bias with increasing

irradiance, is predominantly due to the point-to-grid

averaging, the parallax effect of a single-satellite data

FIG. 3. The difference between the estimated irradiance and the

measurement vs the measured irradiance: (top) GHI, (middle)

DNI, and (bottom)DIF. The black, red, and blue are for regression

scheme A, B, and C, respectively (like all other figures). The light

green line designates the zero line.
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stream, and nonmodeled aerosols. The more extreme

values occur in the wintertime. The slope is typical when

this type of computation is carried out (Vignola and

Perez 2004; Vignola et al. 2007). The regression in-

cluding all the variables is more accurate than the other

regressions, particularly at high DNI values. The DIF

differences also show a slope after about 200Wm22

toward a negative bias and could be explained by the

same effects as the DNI biases.

The information gained by displaying Fig. 4 is the de-

pendency of the errors on the measurement zenith angle.

It is obvious that GHI and DIF have no statistical de-

pendency on the zenith angle for any of the regressions,

whereas the DNI seems to have an increasingly negative

bias from 208 to 708 and then becomes a positive bias by

858. The dependency occurs in all three of the regression

types, but the least effected is the regression with both

satellite and assimilation data. It is thought that the dip is

caused by interference of the beam by clouds, aerosols, and

atmospheric disturbances in neighboring grid cells (nearby

locations) that are not in the regression. The effect is over a

large range of zenith angle values due to (a smaller effect of)

high-level clouds, and then as the sun progresses through the

sky, the DNI is blocked by a lower, and usually thicker, at-

mosphere in the surrounding cells. The samephenomenon is

seen in Vignola and Perez (2004) and Vignola et al. (2007);

however, because of their smaller dataset, they found it not

to be statistically significant. Here, it is shown that it is a real

effect, not just anomalous outliers. One way to correct this

would be to perform the regression not in terms of the ver-

tical column, as is done in the present paper, but rather in

terms of the path integral of theDNI beam (along the zenith

angle); however, this is a substantially harder problem

to solve, which the author plans to address in future

work. It should be noted that some of the effect may be

attributed to the parallax angle created by using only

the GOES-East satellite dataset, because it is reduced

in the assimilation-only regression.

In creating the previous statistics, residuals, and histo-

grams, only the training sites and the two verification sites

have been analyzed. The following part of the present

section will analyze the results from the seven in-

dependent sites provided by NREL and the University of

Oregon when the full model has been applied to them.

The model applies the best regression (of the 32) with the

data available for each hour and geographic location. The

analysis of these results will give a fuller description of

how the regression model is working at sites completely

separate from the training set (both in terms of location,

but also for the agency responsible for the sites). The

seven sites have different frequencies of measurement

than the SURFRAD and ISIS sites, typically being 5 min.

When necessary, the averaging of the measurements was

altered to give accurate top-of-the-hour results. For the

5-min output frequency, averaging was carried out from

15 min before to 15 min after (seven measurements). The

alteration of the averaging does have an impact on the

metrics of the performance of the solar irradiance model.

Figures 5–7 display time series of the measured and es-

timated solar irradiance. The top panels are for the

FIG. 4. As in Fig. 3, but vs the zenith angle.
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31 days from1 January 2006 and the bottompanels are for

the 31 days following 1 June 2006. The dashed red lines

are for the measured irradiance and the solid blue lines

denote the estimated irradiance. The GHI from Burns is

shown in Fig. 5, the DNI from Hermiston in Fig. 6, and

the DIF from Elizabeth in Fig. 7. The time series are

displayed to give an absolute comparison between the

estimation behavior and the actual measurements.

It can be seen in Figs. 5–7 that the estimated irradi-

ance performs better in summer than in winter, on

average. Another salient feature that all three irradi-

ance species have in common is that the estimates ap-

pear to be slightly smoother than the measurements,

but retain the general shape throughout the 31-day

period (which continues over the entire 3-yr period

evaluated). The GHI time series in Fig. 5 show a very

close match between the model and the observations

through time. The estimates are generally slightly be-

low the measurements, as was seen in the MBE. The

features of variability are captured in the GHI esti-

mate, albeit the results are smoothed. The June time

period is more accurate than the January time period,

which is important, because the purpose of the irradi-

ance dataset is to supply a solar PV model for power

output, and summertime is more sensitive to errors (as

the electric load is highest and so is the cost of electricity).

In Fig. 6, it can be seen that the DNI is much harder to

estimate. The estimated DNI is almost always lower

than the observed in winter and higher in summer. The

smoothness of the estimation versus the measurements is

most apparent in these panels, simply because the DNI is

much more prone to variability than GHI and DIF. The

estimated DNI is accurate with the overall trend for a

specific day; for example, day 11 in the bottom panel of

Fig. 6 shows the estimation including the extreme re-

duction in the DNI after clear skies, and then the rapid

increase after the sky clears again before the end of the

day (although the increase was at an earlier time). Finally,

Fig. 7 shows how the DIF estimate can be very accurate

for some time periods (e.g., day 15 onward). It can be seen

in Fig. 7 that there are high values of DIF in the mea-

surements from days 1 to 6. In trying to explain this trend,

the author found that the Elizabeth site had a poor quality

of data for the time period being evaluated. The problem

was only discovered after the analysis was carried out, and

it is shown in the results to illustrate that there are two

sources of error for a regression model such as the current

proposed one: measurement error and model error. The

data log for the Elizabeth site can be found online (http://

rredc.nrel.gov/solar/new_data/confrrm/ec/).

Figure 8 displays the MBE (top panel) and RMSE

(bottom panel) results for the seven independent

FIG. 5. Time series of measured (dashed red) and estimated (solid blue)GHI for Burns: (top)

the 31 days from 1 Jan 2006 and (bottom) the 31 days following 1 Jun 2006. The panels show

high correlation between the estimated and the measured results.
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verification sites and the two initial verification sites

from SURFRAD and ISIS. The metrics are for the

complete solar irradiancemodel. It can be seen that each

site has a different value, illustrating the different levels

of performance at each geographic location. The GHI

estimates perform, on average, as well as they did for the

training sites. DNI and DIF are slightly worse in terms of

MBE and RMSE than they were at the training sites.

FIG. 6. As in Fig. 5, but for DNI at Hermiston.

FIG. 7. As in Fig. 5, but for DIF at Elizabeth.
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Overall, there is a reduction in the accuracy of the re-

gression technique away from the training sites, which is

to be expected. Someof the reduction seen, relative to the

training sites, is due to full datasets being analyzed, as can

be observed by reading the value for the ISIS (HNX) and

SURFRAD (PSU) sites and comparing with the initial

verification in Table 5, again highlighting the importance

of being able to obtain all of the possible measurements.

The most important feature from Fig. 8 is that the re-

gression technique created here performs with the same

order of accuracy as other available techniques (e.g.,

Vignola et al. 2012), with the added benefit of being

created specifically to be temporally aligned with other

datasets on the same spatial grid so that they can be ap-

plied to electric power modeling seamlessly. The tech-

nique was verified against the State University of New

York (SUNY) dataset provided by NREL (http://maps.

nrel.gov/prospector) for time periods that overlapped

with the one investigated here across a sample of the

seven independent sites. It was found that the present

regression technique is superior in terms of MBE and

RMSE. For example, at the Burns site the current tech-

nique has an MBE of21.64% for GHI, while the SUNY

dataset over the same period has an MBE of 22.00%.

Similar statistical differences were found with the other

irradiance species and at different sites. The differences

are not very large, and a review of the SUNY dataset

statistics can be found in, for example, Nottrott and

Kleissl (2010) and Djebbar et al. (2012). More compari-

sons need to be made at more sites to establish if indeed

the current technique is consistently more accurate.

The linear multivariate multiple regression method

has provided estimates of the solar irradiance over the

contiguous United States. The dataset is composed of

’152 000 geographic cells that each contain ’26 000

hourly data points. Figures 9–11 show the 3-yr averages

of GHI, DNI, andDIF over the contiguousUnited States

(kWhm22 day21). To convert from kilowatt hours per

meter squared per day to average watts per meter

squared, one multiplies the value by 41.695; thus, the

range from Fig. 9 is 125–271Wm22. Figure 9 shows that

the southwest is the best resource site in terms of GHI,

which is very important for solar PV. All three maps

show that the extreme Northwest and Northeast are

very poor sources in terms of irradiance. The maps are

consistent with other datasets, but cover a longer time

period and wider geographic area with no blending of

different datasets. Figure 10 is interesting because DNI,

which is very important for concentrated solar power

(CSP), is shown to be best as a resource at locations in the

extreme Southwest. The map in Fig. 11 shows how clear

FIG. 8. (top) MBE and (bottom) RMSE for the seven in-

dependent verification sites and the initial verification sites. Light

gray is for GHI, dark gray is for DNI, and black is for DIF.

FIG. 9. The average estimated GHI (kWhm22 day21) for the

contiguous United States over the 3-yr period of 2006–08. The

Southwest has the greatest solar resource while the Northwest and

East have the least. All boundaries have been removed to display

the detail of the data.
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the skies are over the desert Southwest, and how theGulf

Coast region is dominated by large amounts of DIF

versus DNI, which means it would be suitable for solar

PV (as GHI is a relatively good resource there), but not

as suitable for CSP. Note that the scale has changed in

Fig. 11. Figures 9–11 illustrate the detail within the data-

set, but they are averages of the whole 3-yr period. The

true value of the dataset is in the spatial and temporal

resolution, which is used in section 4 to model solar PV

power output at all the sites across the contiguous United

States. The dataset will be used in future research to

model CSP power output over the contiguous United

States and in detailed electric power system modeling.

4. Solar photovoltaic power estimates

In this section, the contiguous U.S. regression-derived

solar irradiance estimates are applied to a power output

algorithm for a specific solar PV configuration. The

formulation of the power model will be briefly outlined

and a resource assessment for a specific configuration

will be shown at the end.

To compute the solar photovoltaic power output, the

total, direct, and diffuse solar irradiance estimates from

section 3 were inserted into Eqs. (11)–(20) from King

et al. (2004). In making the power estimates, a standard

solar panel for the year of 2007 taken from the NREL

System Advisor Model (SAM) version 2012.5.11 (https://

sam.nrel.gov/) is assumed, namely the SunPower SPR-

315E-WHT. It was assumed that the panels would be

mounted on a single-axis tracker and would be orien-

tated north to south while being tilted at latitude This

results in the angle of incidence on the panels at all

times of the day being the declination angle of the sun

(Masters 2004). The generic constants used by the

power generation algorithm were obtained from

De Soto et al. (2006). The panel-specific constants were

taken from the NREL SAM.

An important feature of solar PV panels is that the

temperature of the cell greatly influences the power

production potential. This effect is dealt with by com-

puting the back of the module temperature using both

the 10-m wind speeds and the 2-m ambient air temper-

ature from the RUC assimilation model. There is no

knowledge in the model of snow or ice covering the

panels. Additionally, the panels are assumed to be

placed far enough apart as to not create shadowing

effects on neighboring panels.

The mathematical formulas for the algorithm of

power production are all contained within King et al.

(2004). An outline the major parts of the algorithm is

described. First, one imports the solar irradiance esti-

mates (GHI, DNI, DIF, and solar zenith angle) along

with the meteorological data (wind speed at 10m and

temperature at 2m). Second, we compute the cell tem-

perature and the angle of incidence of the solar irradi-

ance on the tilted and tracked panel. Third, we calculate

the power falling onto the panel from the irradiance

fields. Fourth, the current and voltages within the panel

are approximated [the equations in King et al. (2004)

and NREL SAM are empirically derived]. Finally, the

current and voltage are combined to calculate the power

for the panel. There are equations within the algorithm,

which are based on NREL SAM, that compute the de-

rating due to the panel structure and material. The

output of the panel is restricted to 115% of the name-

plate capacity. After the algorithm has finished, a post-

processing derate factor of 95% is applied to estimate

downtimes and other deficiencies such as inverter losses

and bad wiring connections. The algorithm performs the

FIG. 10. As in Fig. 9, but for the DNI. The Southwest is the best solar

resource area whereas the rest of the United States is much poorer.
FIG. 11. As in Fig. 9, but for the DIF (the range is different than

in Figs. 9 and 10). The Gulf Coast has the most DIF resource, the

Southwest has the least DIF, and in general the East has more DIF

than the West.
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process at every location within the domain at each time

step and outputs the power estimate into a dataset.

Once the solar PV power estimate algorithm is fin-

ished, the average capacity factors were computed for the

continental United States for the 3-yr period of 2006–08.

The capacity factor maps show what a hypothetical solar

PV plant made of SunPower SPR-315E-WHT panels

would create as an average of the rated capacity in that

model grid cell. For example, if the capacity factor in a

grid cell was 10%, that means on average over the whole

time period the solar PV plant will generate 10% of its

rated capacitymultiplied by the number of hours running.

The efficiency of the panels chosen is 19.3%, which

means it can turn 19.3% of the solar irradiance into

electricity in optimal conditions. The whole power esti-

mate algorithm can be altered, with a few constants, to

produce similar datasets for different panels and different

configurations of tilt, orientation, and tracking.

Figure 12 displays the capacity factor maps for the con-

tinental United States. The scale has a range of 14%–33%.

Figure 12 shows that the Southwest region of the United

States is the absolute best resource, but the structure is far

from simple. The Southeast has great potential, particu-

larly around Lake Okeechobee in Florida. The moun-

tainous regions in Colorado have poorer resources along

the Front Range, as a result of summertime clouds over

the higher terrain. The Seattle area is particularly poor

as a resource. The extreme southwest of California has

the highest capacity factors, which is in agreement with

the climatological data. What is striking is that the ca-

pacity factor map is not the same as any of theGHI, DNI,

or DIF maps (Figs. 9–11), and that is because the

capacity factor takes all three into accounts, as well as

the temperature in the local area. A similar map for

CSP, for example, would be expected to look to be well

correlated to the DNI resource map because of its al-

most total reliance on that specific resource.

5. Discussion and conclusions

The present paper has provided a novel technique for

obtaining solar irradiance species including direct normal

and diffuse horizontal. The underlying engine for the

procedure is a linear multiple multivariate regres-

sion scheme trained upon numerical weather predic-

tion (NWP) assimilation model hydrometeors, satellite

measurements where available, calculated top-of-the-

atmosphere solar irradiance, and ground-based, high-

quality, solar measurements. The choice of regressors is

important, and in the present paper care was taken to

choose, when possible, the best combination of model

parameters to improve the solar irradiance. The solar

irradiance estimates were processed through a solar PV

power output algorithm to obtain a solar PV capacity

factor resource map for the continental United States.

The method was verified against independent sites that

were not in the training of the regression. The verification

showed that the regression produced estimates that are

representative of independent sites. An additional set of

verification sites was acted upon when the full suite of re-

gressions was applied (due to different satellite data

available at different time steps). The results of the verifi-

cation can be seen in Fig. 8, which shows that the use of the

mixed regressions was less accurate than with all the data,

but was consistent over the sites. The model performs as

well as other current satellite models (Vignola et al. 2007).

The results from irradiance modeling indicate that the

technique has a bias that could be due to the ground-

based measurements, the weather data bias, or even the

parallax effect from the satellite data in the regressions.

The power of the regression procedure can be seen most

clearly in Figs. 5–7, where the comparisons forGHI,DNI,

and DIF for a summer and a winter period can be seen.

There is a tendency for a negative bias in the procedure,

but the estimates reproduced some difficult to handle

features, such as rapid changes in irradiance, scattered

cloud irradiance patterns, and morning fog events. In

addition, since the datasets include almost every hour of

the time periods, more analysis can be performed to in-

vestigate seasonal and geographic variations.

The resource maps of GHI, DNI, and DIF, along with

the capacity factor maps, illustrate the best and worst

resource sites. The accuracy of the data and the time in-

terval over which the regression model was trained give

the images some credibility. There are still going to be

FIG. 12. The solar PV capacity factor map for the contiguous

United States. The scale is from14%to 33%.The capacity factor is for

the individual panels described and tilted at latitude, tracking along

one axis. Other solar PV panels will perform differently. One can see

that the dynamic range over theUnited States is not large. The Pacific

Northwest is particularly poor, and the Southwest particularly good.
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errors in the model. Future work will be aimed at in-

creasing the resolution of the weather data to 3 km,

incorporating more satellite data, computing the

training over longer time periods, and assimilating

more ground-based observations to include more cli-

mate regimes. Further future work will be to include

path integral calculations of attenuation that will take

into account neighboring cell properties. In an effort to

determine if a saturated training set was produced,

regressions were performed for the contiguous United

States repeatedly to train the regression scheme and to

see if there was an improvement. Each time a new site

and more data were added, the overall training set

performance improved; however, some specific sites

were made worse. In particular, when all the verifica-

tion sites were included in the training set and the re-

gression was performed, the estimates improved

substantially. However, those results were not used

because no sites would be left to validate against. The

adjusted correlation coefficient for GHI at each site

remained around 92%, theRMSE andCV decreased to

around 17%–19%, and the MBE was 1%–2%. Future

work will incorporate many more training and valida-

tion sites over a wide geographic region.

The entire dataset that was created for the present pa-

per is available online (esrl.noaa.gov/gsd/renewable/news-

results/usstudy/Weather_Inputs/). The files also contain

the spatially and temporally aligned wind dataset (Clack

et al. 2016). The wind and solar PV power estimates

from these datasets were utilized in studies of the U.S.

electric grid (Clack et al. 2015; MacDonald and Clack

et al. 2016).
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